If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X+7=0
a = 1; b = -10; c = +7;
Δ = b2-4ac
Δ = -102-4·1·7
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{2}}{2*1}=\frac{10-6\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{2}}{2*1}=\frac{10+6\sqrt{2}}{2} $
| 9y-10=4y=16 | | 8r−7=18r+15 | | F(-5)=2x³-12x²+18x+1 | | 7x+24x=15 | | F(x)=2x³-12x²+18x+1 | | 23+0.25p=63 | | 4y-8=3y+5 | | 3x^2+7x=-1 | | y=360/y | | 4x+500=880 | | 500x+4=880 | | (4x-7)=(5x-14) | | 2(x-3)+4=3x+6 | | y/4−2=6 | | −4(x+5)=53(3x−12 | | 2Π+d=-3Π | | -2=-3/4x+8 | | 2n+21=189 | | w+–1=97 | | 3x+3(x+4)+4=40 | | |y-4|=|y+10| | | 5x+5-4x+19=180 | | 5,8x/x−62=−4 | | 9(x-5=81 | | 3x/2-4/3=1/6 | | 4a^2-2a=-8 | | 66=6k | | 4a^2-20a=-1 | | 0.85=x-0.35x | | 7x-7+4x+2=6 | | x+20+4x-55+x=180 | | -9y=-10y+4 |